dynadojo.wrappers.SystemChecker#
- class dynadojo.wrappers.SystemChecker#
Bases:
object
Wrapper class for systems that ensures proper input and output handling.
Methods
__init__
(system)Initialize the SystemChecker object.
calc_control_cost
(control)Wraps calc_control_cost.
calc_error
(x, y)Checks that calc_error is called with properly-shaped x and y.
make_data
(init_conds[, control, timesteps, ...])Checks that trajectories tensor has the proper shape.
make_init_conds
(n[, in_dist])Verifies initial condition matrix is the right shape.
Attributes
The embedded dimension of the underlying system.
The latent dimension of the underlying system.
The seed for the underlying system.
- __init__(system)#
Initialize the SystemChecker object.
- Parameters:
system (AbstractSystem) – The underlying system.
Example
>>> from dynadojo.systems.lds import LDSystem >>> SystemChecker(LDSystem()) <SystemChecker<LDSystem>>
- calc_control_cost(control)#
Wraps calc_control_cost.
- Parameters:
control (np.ndarray) – (n, timesteps, embed_dim) control tensor
- Returns:
(n,) control costs vector
- Return type:
np.ndarray
- calc_error(x, y)#
Checks that calc_error is called with properly-shaped x and y.
- Parameters:
x (np.ndarray) – (n, timesteps, embed_dim) trajectories tensor
y (np.ndarray) – (n, timesteps, embed_dim) trajectories tensor
- Returns:
Error between x and y.
- Return type:
float
- property embed_dim#
The embedded dimension of the underlying system.
- property latent_dim#
The latent dimension of the underlying system.
- make_data(init_conds, control=None, timesteps=1, noisy=False)#
Checks that trajectories tensor has the proper shape.
- Parameters:
init_conds (np.ndarray) – (n, embed_dim) initial conditions matrix
control (np.ndarray) – (n, embed_dim) initial conditions matrix
timesteps (int) – timesteps per training trajectory (per action horizon)
noisy (bool) – If True, add noise to trajectories. Defaults to False. If False, no noise is added.
- Returns:
(n, timesteps, embed_dim) trajectories tensor
- Return type:
np.ndarray
- make_init_conds(n, in_dist=True)#
Verifies initial condition matrix is the right shape.
- Parameters:
n (int) – Number of initial conditions.
in_dist (bool) – If True, generate in-distribution initial conditions. Defaults to True. If False, generate out-of-distribution initial conditions.
- Returns:
(n, embed_dim) Initial conditions matrix.
- Return type:
np.ndarray
- property seed#
The seed for the underlying system.